Polyplastics

TEPCON

Acetal Copolymer / POM

General Grade 一般級規格						
Properties 特性	Test method	Unit	M90			
Specific Gravity 比重	ISO 1183	g / cm ³	1.41			
Tensile Strength 抗拉強度	ISO 527-1,2	MPa	62			
Tensile Elongation 拉伸率	ISO 527-1,2	%	35			
Tensile Modulus 抗拉模數	ISO 527-1,2	MPa	2,700			
Flexural Strength 彎曲強度	ISO 178	MPa	87			
Flexural Modulus 彎曲模數	ISO 178	MPa	2,500			
Charpy Impact 衝擊強度						
Notch Side 缺口	ISO 179 / 1eA	KJ/m ²	6.0			
Deflection Temperature under load (1.8MPa) 熱變形溫度	ISO 75-1,2	°C	95			
Coefficient of Linear Thermal Expansion (Flow) 23~55°C 線膨脹係數(流動方向)	ISO 11359-2	x 10 ⁻⁵ / °C	12			
Coefficient of Linear Thermal Expansion (Vertical) 23~55°C 線膨脹係數(垂直方向)	ISO 11359-2	x 10 ⁻⁵ / °C	12			
Dielecttric Strength (Short-time test:3mmt) 絕緣強度(3mmt)	IEC 60243-1	kV/mm	19			
Volume Resistivity 體積阻抗	IEC 60093	Ω.cm	1 x 10 ¹⁴			
Surface Resistivity 表面阻抗	IEC 60093	Ω	1 x 10 ¹⁶			
Flammability UL94 耐燃性	UL94		НВ			
Static Charge Half Life(20°C, 65%RH) 靜電荷半衰期		Sec	> 50			
Arc Resistance 電弧阻抗		Sec	240			
Comparative Tracking Index (CTI) 相對軌跡指數		V	600+			
UL Temperature Index 溫度指數			105~110			
Electrical 電氣	P2 000440	°C				
Mechanical with Impact 機械式		°C	90~95			
Mechanical without Impact 機械	式 个 具衝擊	°C	90~100			

Note: All figures in this table are the typical values of the material and not the minimum value of the material specifications.

POLYPLASTICS TAIWAN CO., LTD.

No.: GZSCR051185024/LP

Date: NOV 14, 2005

Page 1 of 4

ZHANGWU INDUSTRIES ZONE, QIAOLI DISTRICT, CHANGPIN TOWN, DONGGUAN CITY, GUANGDONG 523580, CHINA

Report on the submitted sample said to be POM FM090

SGS Ref No.

: GZ051115371EC

Item No.

: 20051103002

Buyer

: SONY

Supplier

HIVA SHYANG INTERNATIONAL CO., LTD

Manufacturer

: TAISUO (FORMOSACON)

Region of Origin

: TAIWAN : CHINA

Country of Destination Sample Receiving Date Testing Period

: NOV 08, 2005

: NOV 08, 2005 TO NOV 14, 2005

Test Requested

- (1) As specified by client, to determine the Lead, Cadmium, Mercury & Hexavalent Chromita content in the submitted sample. (2) Determination of PBBs (polybrominated biphenyls), PBDEs (Polybrominated
 - diphenylethers) of the submitted sample.

Test method

- : (1) Cadmium content: With reference to BS EN 1122:2001 Method B see flowchart (1) . Lead content: Ashing after wet decomposition see flowchart (2)
 - Mercury content With reference to EPA 3052: 1996.
 - Hexavalent Chromium content with reference to EPA 3060A: 1996 & EPA 7196A:
 - 1992 / acid digestion.
 - Analysis was performed by Atomic Absorption Spectrometer and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) / UV-VIS Spectrophotometer.
 - (2) With reference to ERA 3540C / 3550C. Analysis was performed by GC/MS.

Results

: Please refer to next page.

Signed for and on behalf of SGS-CSTC Ltd.

Zhang Li, Amy Sr. Engineer

states issued by the Company subject to its General Conditions of Service printed overleaf or attached. Said Conditions a TREME is a second of the company adopted the second of the limitations of liability, indemnification and jurisdictional property of the second of the second of the company.

It is the second of the company adopted except in full, without written approval of the Company.

GZCM

364

中国·广州·经济技术开发区科学域列系统198号 解稿:519663 [(86-20)82155555 [(86-20)82075113

13 @ 46 20)82 155555 f (86-20)82075113

No.: GZSCR051185024/LP

Date: NOV 14, 2005

Page 2 of 4

Results:

(1)

	White plastic grains
Lead Content (Pb)	N.D.
Cadmium Content (Cd)	N.D.
Mercury Content (Hg)	N,D.
Hexavalent Chromium Content [Cr(VI)]	.N.D.

Note: - N.D. = Not Detected (< 2 ppm)

-ppm = mg/kg

(2)

	Wiffine plestic grains					
Flame Retardants						
Polybrominated Biphenyls (PBBs)						
Monobromobiphenyl	ND ND					
Dibromobiphenyl	ND					
Tribromobiphenyl	ND ND					
Tetrabromobiphenyl	ND					
Pentabromobiphenyi	ND					
Hexabromobiphenyl	/ ND					
Heptabromobiphenyl	ND					
Octabromobiphenyl	ND					
Nonabromodiphenyl	ND ND					
Decabromodiphenyl	ND					
Polybrominated Diphenylethers (PBDEs)						
Monobromodiphenyl ether	ND					
Dibromodiphenyl ether-	ND					
Tribromodiphenyl ether	ND					
Tetrabromodiphenyl ether	ND					
Pentabromodiphenyl ether	ND					
Hexabromodiphenyl ether	ND					
Heptabromodiphenyl ether	ND					
Octabromodiphenyl ether	NO NO					
Nonabromodiphenyl ether	ND					
Decabromodiphenyl ether	NO.					

Note: - N.D. = Not Detected (< 5 ppm)

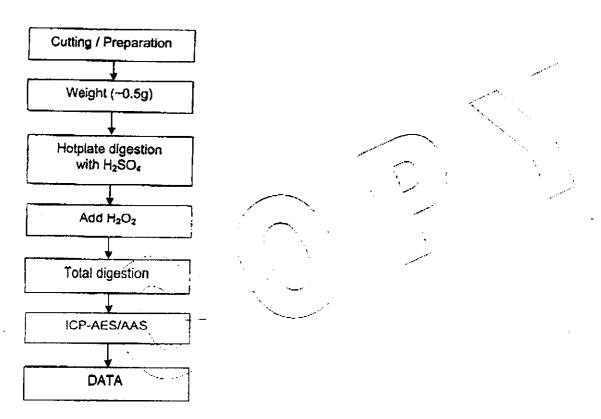
- ppm = mg/kg

End of Report

This Test specific issued by the Company subject to its General Conditions of Service printed overleaf or attached. Said Condition available upon required or are accessible at www.sps.com. Attention is drawn to the firmitations of liability, indemnification and jurisdiction defined therein. The available shown in this Test Report rater only to the sample(s) tested unless otherwise stated and such sample(s) a form day so the This set Report shall not be reproduced except in full, without written approval of the Company.

#8662 Gargian, Chim \$4665 t (86-20)82155555 f (86-20)82075113

No.: GZSCR051185024/LP


Date: NOV 14, 2005

Page 3 of 4

ATTACHMENTS

(1)

Flow chart of digestion (Cadmium content):

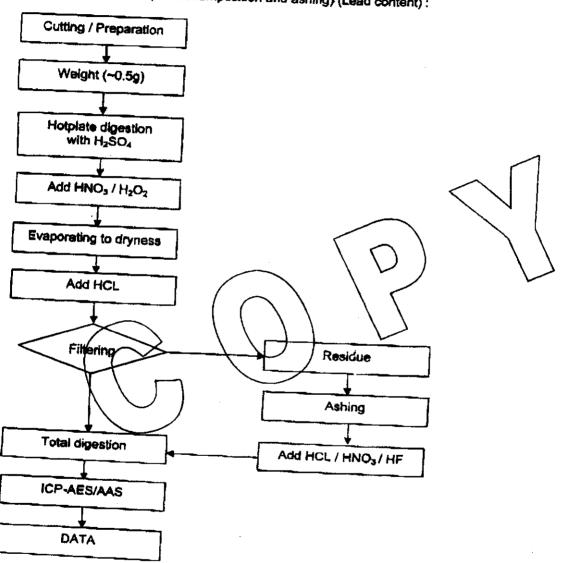
The samples were dissolved totally by pre-conditioning method according to above flow chart.

Operator

: Sams Deng

Leader

: Joe Li



No.: GZSCR051185024/LP

Date: NOV 14, 2005

Page 4 of 4

Flow chart of digestion (wet decomposition and ashing) (Lead content):

The samples were dissolved totally by pre-conditioning method according to above flow chart.

Operator

: Vincent Li

Leader

: Adams Yu

issued by the Company subject to its General Conditions of Service printed overleaf or attached. Said Conditions are a or are accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification and jurisdictional polici uits shown in this Test Report refer only to the sample(s) tested unless otherwise stated and such sample(s) are retain at Report shall not be reproduced except in full, without written approval of the Company.

No. GZ0602275781/CHEM

Date:FEB 27, 2006

Page 1 of 2

RONG HUI PLASTIC PIGMENT CO., LTD.

ZHANG LUO INDUSTRIAL ZONE.

ZHANGMUTOU, DONGGUAN, GUANGDONG, CHINA

Report on the submitted sample said to be PLASTIC GRAIN BLACK

SGS Rer No.

:GZ060215624EC+

Item No

2014 :FEB 22, 2008

Sample Receiving Date Testing Period

:FEB 22, 2006 TO FEB 27, 2006

Test Requested

:(1)As specified by client, to determine the Lead, Cadmium, Mercury & Hexavalent Chromium content in the submitted sample.

.(2) Determination of PBBs (Polybrominated Biphenyls), PBDEs (Polybrominated Diphenylethers) of the submitted sample

Test Method

Results

Conclusion

:(1) Lead content - With reference to EPA method 3050B:1996/ other acid digestion.

Cadmium content -With reference to BS EN1122: 2001 method B/other acid digestion. Mercury content -With reference to EPA 3052:1998/7473: 1998/ other lacid digestion.

Hexavalent Chromium content- with reference to EPA 3060A: 1996 & EPA 7196A: 1996 Analysis was performed by Atomic Absorption Spectrometer / Inductively Coupled. Plasma Atomic Emission Spectrometer (ICP-AES) / Direct Mercury analyzer / UV-VIS Spectrophotometer

(2) With reference to EPA 3540C / 3550C. Analysis was performed by GC/MS

: Please refer to the next page.

: When tested as specified, the results shown on the report do not exceed the limit in commission decision of 18 Aug 2005 amending Directive 2002/95/EC (RoHs)notified unde document 2005/618/6C.

Signed for and on behalf of SGS-CSTC Ltd.

hang LI Amy ir, Engineer

issued by the Company subject to its General Conditions of service printed overleaf or attached. Said Conditions are also on (\$1) of are accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification and jurisdictional pulicies His shown in this test Report rafar only to the earnple(s) tested unless otherwise stated sixt such sample(s) are relained t Report shall not be reproduced except in full, without written approval of the Company.

> 194KEZHU Read, SCIENTECH Park Guangsheu Economic & Technology Bryolopment District, Guangehou China \$10603 中国,广州、经济技术开发区对学域群珠腈198号 MED:510003

1 (88-20)82155555

446-20182075175 WINDLEN HOS GOOK

No. GZ0602275781/CHEM

Date:FEB 27, 2006

Page 2 of 2

Results

(1)

Lead Content (Pb)(ppm) Cadmium Content (Cd)	Black plastic grains	Limit <1000ppm
Mercury Content (Hg) Hexavelent Chromium Content [Cr(VI)]	N.D N.D N.D	<100ppm <1000ppm <1000ppm

Note:-N.D. = Not Detected (<2 ppm) -ppm = mg/kg

(2)

Flame Retardants	Black plastic grains	Limit
Polybrominated Biphonyls (PBBs)		
Monobromobiphenyl	N.D	< 1000
Dibromobiphenyl	N.D	< 1000ppn
Tribromobiphenyl	N.D	
Tetrabromobiphenyl	N.D	
Pentabromobiphenyi	N.D	<u> </u>
Hexabromobiphenyl	N.D	
Heptabromobiphenyl	N.D	
Octabromobiphenyi	N.D	
Nonabromodiphenyl	N.D	-
Decabromodiphenyl	N.D	······································
Polybrominated Diphenylether PBDEs)(Mon-Non)	N.D	
fonobromodiphenyl ether		<1000ppm
ibromodiphenyl ether	N.D	
ribromodiphenyl ether	N.D	- ,
etrabromodiphenyl ether	N.D	-
entabromodiphenvi ether	N.D	
exabromodiphenyl ether	N.D	
eptabromodiphenyi ether	N.D	
Clabromodiphenyl ether	N.D	
nabromodiphenyi ether	N.D	
cabromodiphenyl ether 4	N.D	
ote:-N.D. = Not Detected (< 5 ppm)	N.D	See remark

Note:-N.D. = Not Detected (<5 ppm) - ppm = mg/kg

Remark: Decabromodiphenyl ether (DecaBDE)in polymeric applications is exempted by Commission Decision of 13 Oct 2005 amending Diredctive 2002/95/EC notified under 2006/717/EC.

End of Report

tenant is issued by the Company subject to its General Conditions of service printed overloaf or attached. Said Conditions are also Upon retirest or are accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification and jurisdictional policies it therein. The roules shown in this test Report rafer only to the sample(s) tested unless otherwise stated and such sample(s) are retained Report shall not be reproduced except in full, without written approval of the Company.

> GZCM 574145 (06-20)474/5125 Www.cn.tgatanp

158KEZHII Road, SCENTECH Park Guregzhau Escrivelic A Tactinology Development (Resist, Guangaheu Ethinu 519563 中国,广州、经济技术开发区刊张城科联路198号 **邮编:010663**

1(88-20)42155656 1(46-20)#2155556

CERTIFICATE OF TEST

PONGSAN

Customer JPN DOHO.

Sheet No. : 0000005736

Specification: JIS H 3110 C51918-H

S zé : 0.200 (mm) X 305.000 (mm) X 0.000 (mm)

2005.01.12 Datè .

Onsan Piani

651. Daedung-Ro. Obsahilko kunickio

Uisan Mejropolitan Cily, Kote-

tet . (052) 231-9114

Fax - (052) 231 9405

	Gu	Sn	P	Cu+Sn+P	Term to
	Vα	J. .			និរ ខេត្តបា
	(%)	(%)	(%)	(%)	A New profit
SPEC. Min	R	5 5000	0.0300	99.5000	8.00 (CD)
MAX		7,0000	0.3500		857,000
4BEM1AO	R	5.8160	0.1525	99,9771	437,236
46PH1C0	R	5.8830	0.1579	99.9759	长37 七2号
4 BQ H1C0	Ħ	5.9940	0.1605	99.9827	946 197

- Blank Line -

	Elongation Hardness		Thickness (Outdiamoter)	Width (Thickness)	BendingTest (Budway)
	(%)	(Hv 1kg)	(mm)	(mm)	
SPEC. Min	18.000	190.000	0 190	304.000	180
MAX		210.000	0.210	306.000	8/1-3-63
4BEM1A0	18,000	204.000	0.200	3 05.0 00	1.36.26.2
7112, 113 1			0.202	3 0 5.020	
48PH100	18,000	208.000	0.201	305.000	(9.90)()
			0.204	305.020	
явонтсо	18.000	208.000	0.201	305.000	Soon
, Latin Co			0.203	395 000	
			- Blank Line -		

Appear ance Weight

(ka)

SPEC. Min MAX 4,894.000 Good 4BEM1A0 Good 1,173,000 8PH100 1,172,000 EQH:C0 Good

Blank Lino -

Total Weight :

Remark : We hereby certify that above material has been tested to comply with the specification

H.K.Choi

CERTIFICATE OF TEST

POONGSAN

Customer JPN DOHO. Sheet No. 0000006124

Specification: JIS H 3100 C2680R-H 0.4X310

Size : 0 400 (mm) X 310 000 (mm) X 0 000 (mm)

Date 2005 02.15

	Cu	Zn	Pb	Fe	Tensi¥ # .
					Strength
	(%)	(%)	(%)	(%)	(N/mm²)
SPEC. Min	64.0000	R			451.000
MAX	68.0000		0.0500	0.0500	539.000
51L96B0	65.3100	R	0.0025	0.0048	466 . 208
51R91D0	65.3500	R	0,0023	0.0067	473.661
51 R93F0	65,2000	R	0.0024	0.0062	476.309
51,895E0	65.5000	R	0.0029	0.0063	480 036
	Elongation	Hardness	Thickness (Outdiameter)	Width (Thickness)	BendingTes (Badway)
	(%)	(Hv 1kg)	(mm)	(mm)	
SPEC. Min	12.000	140.000	0.385	309.750	(180 - ,
MAX		170.000	0.415	310.250	R/t=1.0
51 L96B0	23,000	149.000	0.397	310.000	Good
			0.406	310.040	
51R91D0	23.000	153,000	0.397	310,000	Good
			0.403	310.040	
51R93F0	23,000	153.000	0.398	310,000	Good
			0.407	310.040	_
51895E0	20.000	156.000	0.395	310.000	Good
·			0.403	310.040	
	Appear ance	Weight			
		(kg)			
SPEC: Min					副
MAX 51L96B0	Good	4,402.000		XX A	
51R9100	Good	1,115.000		Set	T. STATE OF THE PARTY OF THE PA
51R93F0	Good	4,745.000			
51R95E0	Good	2,062.000			المسلك

Remark: We hereby certify that above material has been tested to comply with the specification.

H.K.Chot

電腦分析儀化學或份(Chemical Compositions)测试報告

数百分割

	·				政内の書の	400012	20802	C0005	0	CONT.	C000
出資日類	智林策泰	COADEN	tr com		を 単独 が	< 0.05		•	1		
-	00/25	RAY SPECTOR		10000000000000000000000000000000000000	The Cart	(2)	(33)	(a)	(S) =	(11)	* (other)
70774	ICAL TESTINO	X 先在自分体操 (VACUUM X RAY SPECTFOODS APPRA		对开会局 %	100	Deministra	- Ann	300	CLARK	COUNT	1
JIS EREE	CHEMICAL T	X先官的会长者		# ##### %	19-09	Bemeinder	OUTMAN	The Care	Co # mara		
	名を記録	無器名類		元条名等	(S) #	(A) *	(%)	(18)		(0)	1 (3)

No.: GZ0601009965/CHEM

Date: FEB 06, 2006

Page 1 of 1

DOHO METAL PRODUCTS (DONGGUAN) CO., LTD XI XING JIE, XI HU GONG YE YUAN, LIN CUN, TANG XIA ZHEN, DONG GUAN SHI, GUANG DONG PROVINCE, CHINA.

Report on the submitted sample said to be C2680R

SGS Ref No.

: SZ060103348RS-6.4

Sample Receiving Date

: JAN 26, 2006

Testing Period

: JAN 26, 2006 TO FEB 06, 2006

Test Requested

: As specified by client, to determine the Lead, Cadmium, Mercury & Hexavalent Chromium

content in the submitted sample.

Test Method

Lead content - With reference to EPA method 3050B: 1996 / other acid digestion. Cadmium content - With reference to BS EN1122; 2001 method B / other acid digestion

Mercury content - With reference to EPA 3052: 1996 / other acid digestion.

Hexavalent Chromium content - With reference to EPA 3060A: 1996 & EPA 7196A: 1992 Analysis was performed by Atomic Absorption Spectrometer / Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) / UV-VIS Spectrophotometer:

Results

Item	Unit	MDL	Golden metal sheel
Lead Content (Pb)	ppm	2	19
Cadmlum Content (Cd)	ppm	2	N.D.
Mercury Content (Hg)	ppm	2	N.D.
Hexavalent Chromium (Cr Vi)	ppm	2	N.D.

Note: - N.D. = Not Detected (< MDL)

- MDL= Method Detection Limit

ppm = mg/kg

*** End of Report ***

Signed for and on behalf of SGS-CSTC Ltd.

Huang Fang, Sunny

Sr. Engineer

issued by the Company subject to its General Conditions of Service printed overleaf or attached. Said Conditions a gt or lare accessible at www.sgs.com. Attention is drawn to the limitations of liability, inclemnification and Jurisdictions (sults shown in this Test Report refer only to the sample(s) tested unless otherwise stated and such sample(s) are re st Report shall not be reproduced except in full, without written approval of the Company.

> GZCM

No.: GZ0601009962/CHEM

Date: FEB 06, 2006

Page 1 of 1

DOHO METAL PRODUCTS (DONGGUAN) CO., LTD XIXING JIE. XI HU GONG YÈ YUAN, LIN CUN, TANG XIA ZHEN, DONG GUAN SHI, GUANG DONG PROVINCE. CHINA.

Report on the submitted sample said to be C5191R

SGS Ref No.

: SZ060103348RS-6.1

Sample Receiving Date

: JAN 26, 2006

Testing Period

: JAN 26, 2006 TO FEB 06, 2006

Test Requested

: As specified by client, to determine the Lead, Cadmium, Mercury & Hexavalent Chromium

content in the submitted sample.

Test Method

: Lead content - With reference to EPA method 3050B: 1996 / other acid digestion

Cadmium content - With reference to BS EN1122: 2001 method B / other acid digestion.

Mercury content - With reference to EPA 3052: 1996 / other acid digestion.

Hexavalent Chromium content - With reference to EPA 3060A: 1996 & EPA 7196A: 1992 Analysis was performed by Atomic Absorption Spectrometer / Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) / UV-VIS Spectrophotometer

Require

Item	Unit	MDL	Coppery metal sheet
Lead Content (Pb)	ppm	2	13 .
Cadmium Content (Cd)	ppm,	2	N.D.
Mercury Content (Hg)	ppmi	2	N.O.
Hexavalent Chromium (Cr VI)	ppm	2	N.O.

Note: - N.D. = Not Detected (< MDL)

- MDL= Method Detection Limit

- ppm = ma/kg

End of Report *

Signed for and on behalf of SGS-CSTC Ltd.

Huang Fang, Sunny Sr. Engineer

Issued by the Company subject to its General Conditions of Service printed overlast or attached. Said Condition : are also tor are accessible at www.aga.com. Attention is drawn to the limitations of liability, indemnification and jurisdictional policies sults shown in this Test Report refer only to the sample(a) tested unless otherwise stated and such sample(s) are retained at Report shall not be reproduced except in full, without written approval of the Company.

No.: GZ0602016856/CHEM

Date: FEB 24, 2006

Page 1 of 2

SEA RAY PLASTIC INDUSTRIAL CO., LTD 3RD INDUSTRIAL ZONE, DAWANGSHAN SHAJING TOWN, BAOAN DISTRICT, SHENZHEN CITY. CHINA

Report on the submitted sample said to be 液镀硫酸镍

SGS Ref No.

: SZ060205953RS-7.4

Buyer

: SONY

Sample Receiving Date

: FEB 20, 2006

Testing Period

.: FEB 20, 2006 TO FEB 24, 2006

: (1) As specified by client, to determine the Lead, Cadmium & Mercury content in the Test Requested submitted sample.

(2) Determination of the presence of Hexavalent Chromium Ch(1) in the submitted metallic samples.

Test Method

: (1) Lead content - With reference to EPA method 3050B; 1996 / other acid digestion:

Cadmium content - With reference to B\$ EN (122: 2001 method B / other acid digestio Mercury content - With reference to EPA 3052, 1996 / 7473, 1998 / other acid digestion Analysis was performed by Atomic Absorption Spectrometer / Inductively Coupled

Plasma Atomic Emission Spectrometer (ICP-AES).

(2) With reference to the Committee Draft of IEC 62321, Ed:1 (Sec. 9.7:2 – Boiling-waterextraction method)

Results

Please refer to next page.

Signed for and on behalf of SGS-CSTC Ltd.

Huang Fang, Sunny Sr. Engineer

issued by the Company subject to its General Conditions of Service printed overleaf or attached. Said Conditions are upon request or are accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification and jurisdictional po d therein. The secults shown in this Test Report refer only to the sample(s) tested unless otherwise stated and such sample(s) are retained by the sample of the Company.

No.: GZ0602016856/CHEM

Date: FEB 24, 2006

Page 2 of/2

Results:

(1)

Lead Content (Pb)(ppm) Cadmium Content (Cd)

Mercury Content (Ha)

Silvery metal 8 N.D.

N.D.

Note: - N.D. = Not Detected (< 2 ppm)

- ppm = mg/kg

(2)

Hexavalent Chromium [Cr(VI)]

Silvery metal

Negative

Note: - Negative means the concentration of Hexavalent Chromium extracted from 50cm sample is less than the detection limit.

Detection limit of Cr(VI) in solution = 0.02 mg/kg Cr(VI) extracted from 50cm2 sample

surface area by boiling-water-extraction method

This Test the Issued by the Company subject to its General Conditions of Service printed overleaf or attached. Sald Conditions a available upon reduct or are accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification and jurisdictional processing the control of the sample of the control of the sample of the company. This was reproduced except in full, without written approval of the Company.

No.: GZ0602016853/CHEM

Date: FEB 24, 2006

Page 1 of 2

SEARAY PLASTIC INDUSTRIAL CO., LTD

3RD INDUSTRIAL ZONE, DAWANG SHAN SHAJING TOWN, BAOAN DISTRICT, SHENZHEN CITY, CHINA

Report on the submitted sample said to be 浓镀银端子类

'SGS Ref No.

Buver

: SONY

Sample Receiving Date

: FEB 20, 2006

: SZ060205953RS-7.1

Testing Period

: FEB 20, 2006 TO FEB 24, 2006

Test Requested

: (1) As specified by client, to determine the Lead, Cadmium & Mercury content in the submitted sample.

(2) Determination of the presence of Hexavalent Chromium Cr(VI) in the submitted

metallic samples.

Test Method

: (1) Lead content - With reference to EPA method 3050B: 1996 / other acid digestion. Cadmium content. With reference to BS EN1122. 2001 method B / other acid digestion Mercury content - With reference to EPA 3052: 1996 / 7473: 1998 / other acid digestion

Analysis was performed by Atomic Absorption Spectrometer / Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES).

(2) With reference to the Committee Draft of IEC 62321, Ed.1 (Sec. 9.7.2 - Boiling-waterextraction method)

Results

Please refer to next page.

Signed for and on behalf of SGS-CSTC Ltd.

Huang Fang, Sunny Sr. Engineer

issued by the Company subject to its General Conditions of Service printed overleaf or attached. Said Conditions are upon required or are accessible at www.sgs.com. Attention is drawn tegine limitations of liability, indemnification and jurisdictional po the distriction and accessible at www.sgs.com. Attention is drawn require limitations of liability, indemnification and jurisdictional policy of the sample shown in this Test Report refer only to the sample(s) tested unless otherwise stated and such sample(s) are returned in the sample shown in this Test Report shall not be reproduced except in full, without written approval of the Company.

No.: GZ0602016853/CHEM

Date: FEB 24, 2006

Page 2 of 2

Results:

(1)

Lead Content (Pb)(ppm)

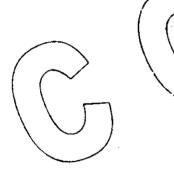
Cadmium Content (Cd) Mercury Content (Hg)

Silvery metal

13 N.D. N.D.

Note: - N.D. = Not Detected (< 2 ppm) -ppm = mq/kq

(2)


Hexavalent Chromium [Cr(VI)]

Silvery metal

Negative

Note: - Negative means the concentration of Hexavalent Chromjum extracted from 50cm

- sample is less than the detection limit.
- Detection limit of Cr(VI) in solution = 0.02 mg/kg Cr(VI) extracted from 50cm surface area by boiling-water-extraction method

issued by the Company subject to its General Conditions of Service printed overleat or attached. Said Conditions ar equal or are accessible at www.sgs.com. Attention is drawn to the limitations of liability, indemnification and jurisdictional p ults shown in this Test Report refer only to the sample(s) tested unless otherwise stated and such sample(s) are rel

st Report shall not be reproduced except in full, without written approval of the Company